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Future	Directions	

Deep	Reinforcement	Learning:	Means	of	Adaptive	Control	

Current	Finding:	DRL	can	be	used	to	discover	a	Robust	
Control	Policy	for	a	complex,	stochastic	system	
Next	Steps:	
•  Modify	Observation	and	Action	space	to	define	

minimally	sufficient	intervals,	targets	and	effects	
•  Optimization	Problem/Active	Learning	Search	to	

identify	minimal	criteria	
•  Current	limitation	of	DRL	=	Interpretability	=>	Extract	

biological	insight	from	arrived	at	control	policies,	e.g.	is	
there	an	“optimal	trajectory”	through	multi-
dimensional	disease	space	

•  Apply	to	other	dynamic	therapeutic	targets	(e.g.	multi-
modal	chemo	vs	evolving	resistance,	wound	healing	in	
face	of	evolving	wound	microbiota)	

•  Machine	learning/artificial	intelligence	approach	to	
“playing	games”	=>	e.g.	Pong,	Lunar	Lander,	AlphaGo	

•  Train	a	policy	that	consists	of	an	optimal	response/
control	action	based	on	the	observed	state	of	a	system	

•  Iterative	learning	process	=>	system	calculates	optimality	
of	an	action	based	a	defined	learning	objective	

•  Reinforcement	Learning	=>	Uses	a	matrix/lookup	table	to	
calculate	effect	of	actions	=>	Limited	capability/
applicability	to	complex	systems	

•  “Deep”	Reinforcement	Learning	=>	Trains	a	neural	
network	to	identify	optimal	policy	=	DRL	Agent	

•  What	makes	it	“adaptive:”	specific	sequence	of	controls	
varies	based	on	individual	system	trajectory;	policy	is	a	
sum	of	actions	given	a	particular	observed	state	

•  Requires	a	simulation	of	the	system	to	train	on	=>	
Innate	Immune	Response	ABM	as	a	proxy	for	sepsis	

	
	Training	and	Learning	

Training	Conditions	of	the	DRL	Agent:	
•  Fully	Observable	System:	21	variable/grid	

point	x	101x101	grid	every	time	step	(6	mins)			
•  Discrete	Action	Space	for	+/-	14	cytokines	

per	Time	Step	(6	minutes	sim	time)	
•  Reward	Function:		

•  Terminal	=	Life	vs	Death	
•  Intermediate	=	Redution	of	system	

damage	
•  1	Episode	=	1	simulation	run	
•  Trained	on	single	parameterization	

(stochastic	replicates)	with	46%	mortality	

Result:	A	Robust	Policy	

Principle	of	Adaptive	Control	=	Different	trajectories	
require	different	sequence	of	control	actions	
•  Test	1	(Upper	Row):	3	Varied	levesl	of	recurrent	

injury	(nosocomial	risk)		
•  Test	2:	(Bottom	Row):	2	Varied	levels	of	initial	

infection	(injury	severity)	
•  Panels	show	implemented	actions	in	terms	of	

degree	of	cytokine	manipulation	
•  Action	Space	is	biologically	plausible:	
•  Test	1:	Oscillating	Containment	of	Nosomical	

insults	
•  Test	2:	Prolongation	of	control	w	larger	injuries,	

early	suppression	and	late	augmentation	of	PAF	

Effective	treatment	of	complex	diseases,	such	as	sepsis,	
cancer,	diabetes,	and	chronic	inflammation	require	
correspondingly	complex	control	strategies	involving	
multiple	targets/levers,	the	configurations	of	which	
must	vary	both	from	patient	to	patient	as	well	as	during	
the	time	course	of	a	single	patient.	We	propose	that	the	
use	of	deep	reinforcement	learning	(DRL),	on	
simulations	of	pathophysiological	processes	can	guide	
the	development	of	multi-modal	and	adaptive	
therapeutic	regimens.	We	present	an	initial	example	of	
DRL	to	identify	an	adaptive	control	policy	for	controlling	
the	Innate	Immune	Response	ABM	(IIRABM)	as	a	proxy	
model	of	sepsis.	This	work	demonstrates	a	path	forward	
in	terms	of	controlling	complex	disease	while	fully	
leveraging	advanced	machine	learning/AI	methods.	

Introduction	

Result:	Adaptive	Control	

Figure 1: Training performance. Top: Return per episode. Middle: Moving average over 100 episodes
of the rates of patient outcome (death: red, timeout: blue, health: green). Bottom: episode length (in
steps). For the top and bottom plots, gray represents the actual value each episode; black represents a
moving average over 100 episodes.

We analyzed the generalizability of the learned policy by testing it over a set of 500 different patient
parameterizations with baseline mortality rates of 1� 99%. The patient parameterizations included
in this study span the entire space of plausible parameterizations for the IIRABM as determined in
[21]. To ensure our test set of patient parameterizations also had a good spread of baseline mortality
rates, we combined five subsets of patient parameterizations, each of which comprised 100 randomly
selected patient parameterizations with baseline mortality rates in one of the following intervals:
(1%, 20%), [20%, 40%), [40%, 60%), [60%, 80%), [80%, 99%). For each patient parameterization,
post-intervention mortality rate was calculated over 50 episodes with different random seeds.

The mortality rates using the learned policy are illustrated as a histogram in Figure 2. The overall
mortality rate (across all 500 patient parameterizations) changed from 46.0% without intervention
to 0.8% under the learned policy. Additionally, under the learned policy, 460 of the 500 patient
parameterizations (92%) have a mortality rate of 0%, 39 patient parameterizations (7.8%) exhibited
reduced mortality rate (with an average reduction of 87%), and 1 patient parameterization resulted in
no change in mortality rate compared to baseline.

For each test patient parameterization, we assessed the performance of the policy relative to the
case with no intervention. Performance was calculated as the difference between baseline mortality
and post-intervention mortality, normalized by the larger of the two mortality rates. Thus, positive
values can be interpreted as the fraction of patients who were healed by the policy that otherwise
would have died, while negative values indicate the fraction of patients who died from the policy that
otherwise would have healed. Figure 2 (bottom) illustrates this performance metric for each patient
parameterization. Since the learned policy did not cause an increase in mortality for any patient
parameterization, the figure includes no negative values. These results suggest that despite being
trained on a single patient parameterization, the learned policy generalizes well, as it is robust to
changes in underlying parameterization.

Policy characterization

To investigate whether the learned policy indeed (1) is adaptive to patients’ state progression over
time, (2) prescribes personalized (i.e. patient-specific) actions, and (3) involves mediating multiple
cytokines simultaneously in coordination, we characterized the policy by observing the time series of
selected actions over various characteristic episodes on different patient parameterizations. Note that
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Figure 2: Top-left: Histogram of baseline mortality rates for 500 test patient parameterizations
(N = 50 instances per test patient parameterization). Top-right: Histogram of post-intervention
mortality rates for 500 test patient parameterizations. Bottom: Performance of the learned
policy on each of the 500 test patient parameterizations, calculated as (baseline mortality �

post-intervention mortality)/max(baseline mortality, post-intervention mortality), sorted by in-
creasing performance.
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(d) PAF (e) IL-1 (f) IFN�

Figure 3: Moving average (window length 20) of action values for PAF, IL-1, and IFN�, selected
by the learned policy during treatment of three patient parameterizations. (a)-(c): Varying recurrent
injury parameter, with all other parameters held constant. (d)-(f): Varying initial injury size, with all
other parameters held constant, and with recurrent injury set to zero. All patients healed from the
policy’s intervention.
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•  Top	Panel:	Return	per	episode	(grey	=	single	episode,	black	moving	average/100	episodes)	
•  Middle	Panel:	Moving	average	over	100	episodes	of	rates	of	patient	outcome	(death	=	red,	timeout	=	

blue,	health	=	green)	
•  Bottom	Panel:	Episode	length	in	steps	(grey	=	single	episode,	black	moving	average/100	episodes)	

Test	of	Generalizability:	Since	DRL	Agent	trained	only	on	1	parameterization,	
is	learned	policy	translatable	to	other	initial	conditions	
•  Tested	over	500	different	initial	conditions,	batched	100/10%	mortality	

intervals,	500	stochastic	replicates/initial	condition	
Results:	Of	500	conditions,	92%	had	0%	mortality,	7.8%	had	reduced	
mortality	(ave	=	87%	reduction),	1	condition	unchanged,	none	worsened	


